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Introduction

® Interconnect Failure under ESD Conditions

@ Interconnects in the I/0 and ESD protection
circuits are subjected to high current stress

@® Can lead to open circuit failures or latent
damage

® Impact of Scaling (ITRS ’99)

® IC performance is wire limited
® Number of I/O pins increases = Ball Grid Array
® Reduced flexibility in wire sizing and spacing

® Introduction of low-k dielectrics with lower
thermal conductivity

@® Interconnect failure becomes more critical

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191



Scaling Effects.
Thermal Conductlwty of Dielectrics
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Historical Perspective

® Kinsborn et al. (1979)

@ conducted lifetime measurements of
unpassivated Al conductors under continuous
high current density pulses

@® attributed interconnect failure to a combination
of electromigration, temperature cycling and
chemical reaction between Al and SiO2

@ Pierce (1982)

@ proposed a theoretical model for unpassivated
metallization burnout under electrical overstress

@ assumed failure to occur at the melting point of
metal
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Historical Perspective

® Kim and Sachse (1991)

@ studied fracture strength of unpassivated metal
lines deposited on window grade quartz
substrates for a single shot current pulse

@® found temperature to initiate fracture in Al films
to be around 300 °C

® Maloney (1992)

® used passivated AlSi and AlICu and attributed
failure to a combination of melting and
evaporation

@ calculation of temperature rise based on
adiabatic assumption
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Historical Perspective

® Murguia and Bernstein (1993)

@® derived a simple relationship between the critical
current density (j) to cause failure under short
current pulses and the pulse width (t):

@ j’t = 108 A%s/cm*
@® based on the failure temperature of 300 °C and
adiabatic conditions
® Gui et al. (1995)

@ carried out detailed simulations for passivated
multilayered interconnect heating under transient
stress conditions

® demonstrated limitations of the adiabatic model
for pulse widths > 2us
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Historical Perspective

@® Ramaswamy et al. (1995)

® reported interconnect damage in ESD protection
circuits for advanced CMOS technology

@® Banerjee et al. (1996, 1997)

@ developed transient resistive thermometry to
estimate the temperature rise of AICu wires

@ reported open circuit metal failure at 1000 °C

@ proposed a new interconnect heating model
under ESD conditions

@ reported a latent interconnect damage that
degrades EM lifetime

@ characterized the impact of low-k dielectrics
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Historical Perspective

® Voldman (1997, 1998)
@ studied high current failure of Cu interconnects

® showed that the Banerjee model can also be
applied to damascene Cu interconnects

@® found Cu interconnects to be more robust than
AlICu

® Salome et al. (1998)

@® confirmed the critical temperature rise of 1000 °C
using SPICE based electrothermal simulations

@ confirmed the latent interconnect damage
phenomenon
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Historical Perspective

® Banerjee et al. (2000)

@ performed microanalysis of interconnect (AlCu)
failure modes under ESD conditions

® formulated a thermo-mechanical model to
account for the open circuit failure

@ provided direct evidence of latent interconnect
damage
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EM vs Short-Pulse Failure

(A/gmz) Tem?o%’)a ture Mechanism | Time scale
EM Failure
Field Conditions: |4 -6 x105 | ~85-100 diffusion || {55 1,
Package Level: [1-3x10% | ~100-200 diffusion steady
Wafer Level: 0.5-1x107| ~150-300 | diffusion || state
:;I:ﬂg t;CFl;riﬁ?; Short- > 107 ~1000 fusion no:IS-:{tte:gdy

T, thermal time constant (~ 2 us)
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Interconnect Heating under DC
Stress (RPs 96)
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Transient Thermometry
Measurement

B Transmission Line Pulser System
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Experimental Approach
B DC Resistance Thermometry
AT:[Rf ‘RO] .
R, "TCR

® TCR is the temperature coefficient of resistance.

Temperature Rise,

B Transient Resistive Thermometry (IRPS 96)
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Non Steady-State Self-Heating

® Self-heating (SH) characteristics of AlCu lines under
short-pulse stress conditions (EDL 97)

® Metal 1, 2, & 3 show
identical SH

® Higher SH in Metal 4 is
due to smaller surface
area to volume ratio
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® Interconnect failure
temperature is ~ 1000 °C

Current Density, J [x10” A/lcm?]
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Temperature Rise using Finite
Element Simulations (rRw )

Experimental Simulations
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® FE simulations confirm temperature rise
beyond melting point.
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Thermal Capacity under Short-

Pulse Stress e
Pulse Energy
E= Cth AT =

Ycrit

= ,(Rf‘Ro (i
th = TCR
0

C,, = thermal
capacity

(=)
14
—

X

©

S
14
<
0’\
Z
a
qa
Q
=
«
~ad
72}
7
5
a2

15
Pulse Energy [uJ]

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191



Oxide Sheath Model (ebL97)

Oxide sheath
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® Difference in extracted and calculated thermal capacity
is used to calculate the oxide sheath thickness
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Energy Considerations

N (EDL 97)

Pulse energy: E = jl -Vdt
0
E critical = I:C Alcu T CTiN + Coxide —sheath]ATcritical + EMelt

—-1/2
2
= Jcritical

—1
=0, At " + O, At + O,
(adiabatic) (heat diffusion)
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Maximum Current Density Model
(EDL 97)
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High Pulsed-Current Design Rules
(EDL 97)

TiN/AICuU/TiN System
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Impact of Line Width Scaling and Low-k

Pulsed Conditions (IEDM 96)
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® Low-k - smaller thermal capacity due to lower thermal
conductivity

® As W decreases and pulse width increases effect of
low-k increases
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Summary (1)

® Interconnect heating under short pulses - not entirely
adiabatic - strongly dependent on the thermal capacity
of the metal, the pulse width, and the surrounding
dielectric material.

® Oxide Sheath Model: A new technique to estimate
thermal conductivity of low-k dielectrics.

® Line width scaling and low-k dielectric impacts
interconnect heating.

® High current/ESD metal design guidelines generated.
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Open Circuit Failures
(IRPS 2000)

Metal 4 Metal 1

@® Passivation fracture due to the expansion of
critical volume of molten AICu. (@ 1000 °C)

® Independent of overlying dielectric thickness
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Thermomechanical
Simulation (IRPS 2000)
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@® Oxide sheath under higher tensile stress
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Stress States  zps 2000)

N
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® Artificially high stresses beyond T, ., = entire line does
not melt at temperatures well beyond T_
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Latent Damage

® Latent ESD Damage: AlICu lines pulsed by sub-
critical pulses show significant electromigration
degradation without measurable change in line
resistance. [Banerjee, IRPS ‘96]

@® Microstructure change was proposed to explain
the EM degradation without any physical evidence
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Experimental
(IRPS 2000)

® Unstressed AICu lines

@® AlICu lines pulsed just below the open
circuit failure temperature

® No physical damage or increase in line
resistance

® EM lifetime degradation by a factor of 4
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TEM Micrograph: Unstressed
AlICu Line (IRPS 2000)

® Average grain size: 1.2 um

@® Well defined grain shape
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Diffraction Pattern:
Unstressed AICu Line (IrRps 2000)

@® Sparse spatial formation of diffraction spots

= small number of large grains
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TEM Micrograph:
Stressed AICu Line (IRPS 2000)

Defect

R e il e & ‘—A.._‘..l

@ Different microstructure (small grain size) around
the spot ---melting and resolidification

® Segments between defects with grain size identical
to unstressed line ---entire line does not melt
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SEM Micrograph

(IRPS 2000)

® Reveals material loss at the defect sites ---metal diffusion
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TEM Micrograph: Microstructure
Near the Defect  (IRPS 2000)

® Reveals very small grain formation
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Diffraction Pattern Near
The Defect Site  (rps 2000)

@ Diffraction rings = large number of small grains

® Innermost ring = new phase, different from AlCu
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Latent Faillure Mechanism

@ Void nucleation and growth result from diffusional
processes under high current density and high
temperature.

@® Short duration of the pulse induces localized
melting only.

® Small grains around the defects can only result
from melting and resolidification.
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Summary (2)

@ Detailed microanalysis of passivated AICu lines
has provided direct evidence of latent metal
damage causing EM degradation:

® Voiding: due to material diffusion under high
temperature and current density.

® Grain size reduction: due to melting and
resolidification.

® Thermo-mechanical model for open circuit failures
explains the unusually high failure temperature.
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Contact and Via
Characterization

Banerjee et al., IRPS 1997

@® Characterized contact and via failure under
short time joule heating (ESD events)

® Identified mechanisms responsible for
contact/via degradation and failure under
these stresses

® Presented a methodology to study effects of
process variation on contact robustness
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Self-Heating Characteristics for

Single 0.3um W-Contacts
(IRPS 97)

Failure Threshold .
16 4 Py ® J_. decreases with

pulse width

® Independent of
direction of current

® AT exceeds 800 °C
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Contact and Via Robustness under

Short Pulsed Stress
(IRPS 97)

Aum W-Vias

- 0.4um W-contacts

J_.. [X10°Alcm’]
-

100 200 300 400 500

At [ns]
® Vias are more robust due to their lower resistance
and better heat conduction capability
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Effect of Substrate Thermal

Conductivity
(IRPS 97)
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TEM of Unstressed W-Contact to n+ Si
(IRPS 97)
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Silicided Contact Degradation
(IRPS 97)
TEM ofa Stressed 0.3 um Contact to n+ s.

Interface

ol L

n+ Diffusion Region
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Evolution of Contact Degradation
Under High Current Stress (IEpm 97)

Initial degradation state Severe degradation state

® The degradation front is captured using a short pulse.
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ST uEAE)

® TEM analysis used to identify contact failure
mechanism under short-pulse stress:

characterized by a breakdown of the TiN/TiSi2
interface

@ Contact degradation is independent of the current
direction, plug material and sheet resistivity of the
diffusion region

® Contact degradation sensitive to the thermal
conductivity of the substrate

® J_ .. has a strong dependence on the pulse width,
cross sectional area and number of contacts
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Future Directions

@ Interconnect reliability due to high-current/ESD
events will become increasingly important for deep
sub-micron technologies

® Need to characterize lines, vias, contacts, and their
interfaces involving emerging materials

® The transient resistive thermometry technique can
be an effective tool for high-current characterization
of various interconnect structures

@® The transient technique is also very useful for
studying various thermally accelerated interconnect
failure mechanisms
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