Interconnect Reliability under ESD Conditions: Physics, Models, and Design Guidelines

Kaustav Banerjee

Center for Integrated Systems Stanford University http://ee.stanford.edu/~kaustav

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Presentation Outline

- Introduction
- Historical Perspective
- State-of-the-art in Modeling/Design
- Failure Mechanisms
- Summary
- Future Directions
- References

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Introduction

Interconnect Failure under ESD Conditions

- Interconnects in the I/O and ESD protection circuits are subjected to high current stress
- Can lead to open circuit failures or latent damage

Impact of Scaling (ITRS '99)

- IC performance is wire limited
- Number of I/O pins increases => Ball Grid Array
- Reduced flexibility in wire sizing and spacing
- Introduction of low-k dielectrics with lower thermal conductivity
- Interconnect failure becomes more critical

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Scaling Effects: Thermal Conductivity of Dielectrics

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Kinsborn et al. (1979)

Conducted lifetime measurements of unpassivated Al conductors under continuous high current density pulses

 attributed interconnect failure to a combination of electromigration, temperature cycling and chemical reaction between Al and SiO2

Pierce (1982)

Proposed a theoretical model for unpassivated metallization burnout under electrical overstress

• assumed failure to occur at the melting point of metal

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

• Kim and Sachse (1991)

 studied fracture strength of unpassivated metal lines deposited on window grade quartz substrates for a single shot current pulse

 found temperature to initiate fracture in Al films to be around 300 °C

Maloney (1992)

• used passivated AISi and AICu and attributed failure to a combination of melting and evaporation

Stanford University

 calculation of temperature rise based on adiabatic assumption

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Murguia and Bernstein (1993)

 derived a simple relationship between the critical current density (j) to cause failure under short current pulses and the pulse width (t):

• $j^2 t = 10^8 A^2 s/cm^4$

based on the failure temperature of 300 °C and adiabatic conditions

• Gui et al. (1995)

 carried out detailed simulations for passivated multilayered interconnect heating under transient stress conditions

 demonstrated limitations of the adiabatic model for pulse widths > 2μs

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Ramaswamy et al. (1995)

- reported interconnect damage in ESD protection circuits for advanced CMOS technology
- Banerjee et al. (1996, 1997)
 - developed transient resistive thermometry to estimate the temperature rise of AICu wires
 - reported open circuit metal failure at 1000 °C
 - Proposed a new interconnect heating model under ESD conditions
 - reported a latent interconnect damage that degrades EM lifetime
 - Characterized the impact of low-k dielectrics

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Voldman (1997, 1998)

- Studied high current failure of Cu interconnects
- Showed that the Banerjee model can also be applied to damascene Cu interconnects
- found Cu interconnects to be more robust than AICu

Salome et al. (1998)

 confirmed the critical temperature rise of 1000 °C using SPICE based electrothermal simulations

Confirmed the latent interconnect damage phenomenon

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Banerjee et al. (2000)

- performed microanalysis of interconnect (AICu) failure modes under ESD conditions
- formulated a thermo-mechanical model to account for the open circuit failure
- Provided direct evidence of latent interconnect damage

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

EM vs Short-Pulse Failure

	J (A/cm²)	Temperature (ºC)	Mechanism	Time scale
<u>EM Failure</u>				
Field Conditions: Package Level:	4 - 6 x10 ⁵ 1 - 3 x10 ⁶	~ 85 - 100 ~ 100 - 200	diffusion diffusion	t >> τ ₀ steady
Wafer Level:	0.5 - 1 x10 ⁷	~ 150 - 300	diffusion _	state
<u>High-Current Short-</u> Pulse Failure	> 10 ⁷	~ 1000	fusion	t << τ ₀ non-steady state

 τ_0 : thermal time constant (~ 2 µs)

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Interconnect Heating under DC Stress (IRPS 96)

● ∆T increases with increasing t_{ox}

Transient Thermometry Measurement

Transmission Line Pulser System

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Experimental Approach DC Resistance Thermometry Temperature Rise, $\Delta T = [\frac{R_f - R_0}{R_0}] \frac{1}{TCR}$

TCR is the temperature coefficient of resistance.

Transient Resistive Thermometry (IF

(IRPS 96)

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Non Steady-State Self-Heating

 Self-heating (SH) characteristics of AICu lines under short-pulse stress conditions (EDL 97)

Metal 1, 2, & 3 show identical SH

 Higher SH in Metal 4 is due to smaller surface area to volume ratio

Interconnect failure temperature is ~ 1000 °C

Temperature Rise using Finite Element Simulations (IRW 96)

Experimental

Simulations

FE simulations confirm temperature rise beyond melting point.

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Thermal Capacity under Short-
Pulse Stress(EDL 97)

Pulse Energy $E = C_{th} \cdot \Delta T = \frac{R_f - R_0}{C_{th}} \frac{1}{TCR}$

C_{th} = thermal capacity

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Oxide Sheath Model (EDL 97)

Difference in extracted and calculated thermal capacity is used to calculate the oxide sheath thickness

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Energy Considerations
(EDL 97)
Pulse energy:
$$E = \int_{0}^{\Delta t} I \cdot V dt$$

 $E_{critical} = [C_{AlCu} + C_{TiN} + C_{oxide} - sheath] \Delta T_{critical} + E_{Melt}$
 $\Rightarrow J_{critical}^{2} = \Phi_{1} \Delta t^{-1} + \Phi_{2} \Delta t^{-1/2} + \Phi_{3}$
(adiabatic) (heat diffusion)

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Maximum Current Density Model

18 High Current Model 16 Data 14 J_{crit} [x10⁷ A/cm²] $J_{crit}^{2} = \phi_{1}(\Delta t)^{-1} + \phi_{2}(\Delta t)^{-1/2} + \phi_{3}$ 12 10 8 $J_{crit}^{2} = \phi_{1}(\Delta t)^{-1}$ 6 4 $d_{m} = 0.8 \ \mu m$ 2 L/W=1000 μm/3 μm 0 100 200 300 400 500 0 Pulse Width, ∆t [ns]

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Stanford University

(EDL 97)

High Pulsed-Current Design Rules

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Impact of Line Width Scaling and Low-k Pulsed Conditions (IEDM 96)

 Low-k - smaller thermal capacity due to lower thermal conductivity

As W decreases and pulse width increases effect of low-k increases

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Summary (1)

- Interconnect heating under short pulses not entirely adiabatic - strongly dependent on the thermal capacity of the metal, the pulse width, and the surrounding dielectric material.
- Oxide Sheath Model: A new technique to estimate thermal conductivity of low-k dielectrics.
- Line width scaling and low-k dielectric impacts interconnect heating.
- High current/ESD metal design guidelines generated.

Open Circuit Failures (IRPS 2000)

Metal 4

Metal 1

 Passivation fracture due to the expansion of critical volume of molten AICu. (@ 1000 °C)

Independent of overlying dielectric thickness

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

ThermomechanicalSimulation(IRPS 2000)

Oxide sheath under higher tensile stress

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Stress States

Maximum Principal Stress [GPa] 6 **AICu** TiN 5 **Heated Oxide** 3 Sheath (300 nm) $T_{ox-sheath} = T_m$ 2 fracture melt 0 1000 1200 200 400 600 800 0 Metal Temperature, T_m [⁰C]

(IRPS 2000)

Passivation fracture strength: ~ 1 GPa

Artificially high stresses beyond T_{melt} ⇒ entire line does not melt at temperatures well beyond T_{melt}

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Latent Damage

- Latent ESD Damage: AICu lines pulsed by subcritical pulses show significant electromigration degradation without measurable change in line resistance. [Banerjee, *IRPS* '96]
- Microstructure change was proposed to explain the EM degradation without any physical evidence

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Experimental (IRPS 2000)

- Unstressed AICu lines
- AICu lines pulsed just below the open circuit failure temperature
 - No physical damage or increase in line resistance
 - EM lifetime degradation by a factor of 4

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

TEM Micrograph: UnstressedAICu Line(IRPS 2000)

Average grain size: 1.2 μm
 Well defined grain shape

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Diffraction Pattern: Unstressed AICu Line (IRPS 2000)

Sparse spatial formation of diffraction spots small number of large grains

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

- Different microstructure (small grain size) around the spot ---melting and resolidification
- Segments between defects with grain size identical to unstressed line ---entire line does not melt

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

SEM Micrograph

(IRPS 2000)

Reveals material loss at the defect sites --- metal diffusion

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

TEM Micrograph: Microstructure Near the Defect (IRPS 2000)

Reveals very small grain formation

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Diffraction Pattern Near The Defect Site (IRPS 2000)

Diffraction rings => large number of small grains
 Innermost ring => new phase, different from AlCu

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Latent Failure Mechanism

- Void nucleation and growth result from diffusional processes under high current density and high temperature.
- Short duration of the pulse induces localized melting only.
- Small grains around the defects can only result from melting and resolidification.

Stanford University

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Summary (2)

- Detailed microanalysis of passivated AlCu lines has provided direct evidence of latent metal damage causing EM degradation:
 - Voiding: due to material diffusion under high temperature and current density.
 - Grain size reduction: due to melting and resolidification.
- Thermo-mechanical model for open circuit failures explains the unusually high failure temperature.

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Contact and Via Characterization

Banerjee et al., IRPS 1997

- Characterized contact and via failure under short time joule heating (ESD events)
- Identified mechanisms responsible for contact/via degradation and failure under these stresses
- Presented a methodology to study effects of process variation on contact robustness

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Self-Heating Characteristics for Single 0.3µm W-Contacts

(IRPS 97)

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Contact and Via Robustness under Short Pulsed Stress

(IRPS 97)

<u>∆t</u>[ns]

Vias are more robust due to their lower resistance and better heat conduction capability

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Effect of Substrate Thermal Conductivity

(IRPS 97)

TEM of Unstressed W-Contact to n+ Si (IRPS 97)

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Silicided Contact Degradation (IRPS 97)

TEM of a Stressed 0.3 μm Contact to n+ Si

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Evolution of Contact Degradation Under High Current Stress (IEDM 97)

Initial degradation state

Severe degradation state

The degradation front is captured using a short pulse.

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Summary (3)

 TEM analysis used to identify contact failure mechanism under short-pulse stress: characterized by a breakdown of the TiN/TiSi2 interface

Contact degradation is independent of the current direction, plug material and sheet resistivity of the diffusion region

Contact degradation sensitive to the thermal conductivity of the substrate

J_{crit} has a strong dependence on the pulse width, cross sectional area and number of contacts

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

Future Directions

 Interconnect reliability due to high-current/ESD events will become increasingly important for deep sub-micron technologies

Need to characterize lines, vias, contacts, and their interfaces involving emerging materials

The transient resistive thermometry technique can be an effective tool for high-current characterization of various interconnect structures

The transient technique is also very useful for studying various thermally accelerated interconnect failure mechanisms

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

References (1)

- K. Banerjee and A. Mehrotra, "Global (Interconnect) Warming," IEEE Circuits and Devices Magazine, September 2001.
- T-Y. Chiang, K. Banerjee, K. C. Saraswat, "Effect of Via Separation and Low-k Dielectric Materials on the Thermal Characteristics of Cu Interconnects," *IEDM*, 2000, pp. 261-264.
- K. Banerjee, D. Y. Kim, A. Amerasekera, C. Hu, S. S. Wong, and K. E. Goodson, "Microanalysis of VLSI Interconnect Failure Modes under Short-Pulse Stress Conditions," *IRPS*, 2000, pp. 283-288.
- S. H. Voldman, "The Impact of Technology Scaling on ESD Robustness of Aluminum and Copper Interconnects in Advanced Semiconductor Technologies," *IEEE Trans. Components, Packaging,* and Manufacturing Technology-Part C, Vol. 21, No. 4, pp. 265- 277, 1998.
- P. Salome, C. Leroux, P. Crevel, and J. P. Chante, "Investigations on the Thermal Behavior of Interconnects under ESD Transients using a Simplified Thermal RC Network," *EOS/ESD Symp. Proc.*, 1998, pp. 187-198.
- K. Banerjee, A. Amerasekera, J. A. Kittl, and C. Hu, "High Current Effects in Silicide Films for Sub-0.25 micron VLSI Technologies," *IRPS*, 1998, pp. 284-292.
- K. Banerjee, A. Amerasekera, G. Dixit, and C. Hu, "Temperature and Current Effects on Small-Geometry-Contact Resistance," *IEDM*, 1997, pp.115-118.
- S. H. Voldman, "ESD Robustness and Scaling Implications of Aluminum and Copper Interconnects in Advanced Semiconductor Technology," *EOS/ESD Symp. Proc.* 1997, pp. 316-329.
- K. Banerjee, A. Amerasekera, N. Cheung, and C. Hu, "High-Current Failure Model for VLSI Interconnects Under Short-Pulse Stress Conditions," *IEEE Electron Device Letters*, vol. 18, No. 9, pp. 405-407, 1997.
- K. Banerjee, A. Amerasekera, G. Dixit, N. Cheung, and C. Hu, "Characterization of Contact and Via Failure under Short Duration High Pulsed Current Stress," *IRPS*, 1997, pp. 216-220.

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191

- K. Banerjee, S. Rzepka, A. Amerasekera, N. Cheung, and C. Hu, "Thermal Analysis of the Fusion Limits of Metal Interconnect under Short Duration Current Pulses," *IRW*, 1996, pp. 98-102.
- K. Banerjee, A. Amerasekera, G. Dixit, and C. Hu, "The Effect of Interconnect Scaling and Low-k Dielectric on the Thermal Characteristics of the IC Metal," *IEDM*, 1996, pp. 65-68.
- K. Banerjee, A. Amerasekera, and C. Hu, "Characterization of VLSI Circuit Interconnect Heating and Failure under ESD Conditions," *IRPS*, 1996, pp. 237-245
- S. Ramaswamy, C. Duvvury and S. Kang, "EOS/ESD Reliability of Deep Sub-micron NMOS Protection Devices," IRPS, 1995, pp. 284-291.
- X. Gui, S. D. Dew and M. J. Brett, "Thermal Simulation of Thin-film Interconnect Failure Caused by High Current Pulses," *IEEE Trans. Electron Devices*, Vol. 42, No. 7, pp. 1386-1388, 1995.
- J. E. Murguia and J. B. Bernstein, "Short-time Failure of Metal Interconnect Caused by Current Pulses," *IEEE Electron Device Lett.*, Vol. 14, No. 10, pp. 481-483, 1993.
- T. J. Maloney, "Integrated Circuit Metal in the Charged Device Model: Bootstrap Heating, Melt Damage and Scaling Laws," *EOS/ESD Symp. Proc.*, 1992, pp. 129-134.
- K. Y. Kim and W. Sachse, "Dynamic Fracture Test of Metal Thin Films Deposited on an Insulating Substrate by a High Current Pulse Method," *Thin Solid Films*, 205, pp. 176-181, 1991.
- D. G. Pierce, "Modeling Metallization Burnout of Integrated Circuits," Proc. EOS/ESD Symp., 1982, pp. 56-61.
- E. Kinsborn, C. M. Melliar-Smith, and A. T. English, "Failure of Small Thin-film Conductors due to High Current Density Pulses," *IEEE Trans. Electron Devices*, vol ED-26, No. 1, pp. 22-26, 1979.

K. Banerjee, EOS/ESD Symposium 2001, Invited Paper 3A.1, p. 191